崇明區(qū)常見科學(xué)計(jì)算軟件供應(yīng)

來(lái)源: 發(fā)布時(shí)間:2025-07-28

resultant - 計(jì)算兩個(gè)多項(xiàng)式的終結(jié)式bernoulli - Bernoulli 數(shù)和多項(xiàng)式bernstein - 用Bernstein多項(xiàng)式近似一個(gè)函數(shù)content, primpart - 一個(gè)多元的多項(xiàng)式的內(nèi)容和主部degree, ldegree - 一個(gè)多項(xiàng)式的比較高次方/比較低次方divide - 多項(xiàng)式的精確除法euler - Euler 數(shù)和多項(xiàng)式icontent - 多項(xiàng)式的整數(shù)部分interp - 多項(xiàng)式的插值prem, sprem - 多項(xiàng)式的pseudo 余數(shù)和稀疏pseudo 余數(shù)randpoly - 隨機(jī)多項(xiàng)式生成器spline - 計(jì)算自然樣條函數(shù)第8章 有理表達(dá)式8.0 有理表達(dá)式簡(jiǎn)介簡(jiǎn)介:這些是高級(jí)編程語(yǔ)言,也常用于科學(xué)計(jì)算。崇明區(qū)常見科學(xué)計(jì)算軟件供應(yīng)

崇明區(qū)常見科學(xué)計(jì)算軟件供應(yīng),科學(xué)計(jì)算軟件

exp - 指數(shù)函數(shù)sum - 確定求和不確定求和sqrt - 計(jì)算平方根算術(shù)運(yùn)算符+, -, *, /, ^add, mul - 值序列的加法/乘法2.2 三角函數(shù)arcsin, arcsinh, . - 反三角函數(shù)/反雙曲函數(shù)sin, sinh, . - 三角函數(shù)/雙曲函數(shù)2.3 LOGARITHMS 函數(shù)dilog - Dilogarithm 函數(shù)ln, log, log10 - 自然對(duì)數(shù)/一般對(duì)數(shù),常用對(duì)數(shù)2.4 類型轉(zhuǎn)換convert/`+`,convert/`*` - 轉(zhuǎn)換為求和/乘積convert/hypergeom - 將求和轉(zhuǎn)換為超越函數(shù)convert/degrees - 將弧度轉(zhuǎn)換為度convert/expsincos - 將trig 函數(shù)轉(zhuǎn)換為exp, sin, cosconvert/Ei - 轉(zhuǎn)換為指數(shù)積分楊浦區(qū)怎樣科學(xué)計(jì)算軟件推薦在高等教育中,科學(xué)計(jì)算軟件成為學(xué)生學(xué)習(xí)高等數(shù)學(xué)、物理、工程等學(xué)科的得力助手。

崇明區(qū)常見科學(xué)計(jì)算軟件供應(yīng),科學(xué)計(jì)算軟件

expand -表達(dá)式展開Expand - 展開表達(dá)式的惰性形式expandoff/expandon - 抑制/不抑制函數(shù)展開5.2 因式分解Afactor - ***因式分解的惰性形式Afactors - ***因式分解分解項(xiàng)列表的惰性形式Berlekamp - 因式分解的Berlekamp 顯式度f(wàn)actor - 多元的多項(xiàng)式的因式分解factors - 多元多項(xiàng)式的因式分解列表Factor - 函數(shù)factor 的惰性形式Factors - 函數(shù)factors 的惰性形式polytools[splits] - 多項(xiàng)式的完全因式分解第6章 化簡(jiǎn)6.1 表達(dá)式化簡(jiǎn)118simplify - 給一個(gè)表達(dá)式實(shí)施化簡(jiǎn)規(guī)則simplify/@ - 利用運(yùn)算符化簡(jiǎn)表達(dá)式simplify/Ei - 利用指數(shù)積分化簡(jiǎn)表達(dá)式

SchurForm 將方陣約化為 Schur 型SingularValues 計(jì)算矩陣的奇異值SmithForm 將矩陣約化為 Smith 正規(guī)型StronglyConnectedBlocks 計(jì)算方陣的強(qiáng)連通塊SubMatrix 構(gòu)造矩陣的子矩陣SubVector 構(gòu)造向量的子向量SylvesterMatrix 構(gòu)造兩個(gè)多項(xiàng)式的 Sylvester 矩陣ToeplitzMatrix 構(gòu)造 Toeplitz 矩陣Trace 計(jì)算方陣的跡Transpose轉(zhuǎn)置矩陣HermitianTranspose 共軛轉(zhuǎn)置矩陣TridiagonalForm 將方陣約化為三對(duì)角型UnitVector 構(gòu)造單位向量VandermondeMatrix 構(gòu)造一個(gè) Vandermonde 矩陣VectorAngle 計(jì)算兩個(gè)向量的夾角隨著計(jì)算機(jī)技術(shù)的不斷發(fā)展,科學(xué)計(jì)算軟件也在不斷更新?lián)Q代。

崇明區(qū)常見科學(xué)計(jì)算軟件供應(yīng),科學(xué)計(jì)算軟件

科學(xué)計(jì)算軟件是指專門用于科學(xué)和工程中的數(shù)值計(jì)算的軟件,它們通常具備強(qiáng)大的計(jì)算能力和豐富的功能,以滿足復(fù)雜數(shù)值計(jì)算的需求。以下是一些常見的科學(xué)計(jì)算軟件:Matlab:簡(jiǎn)介:由美國(guó)MathWorks公司出品的商業(yè)數(shù)學(xué)軟件,在符號(hào)計(jì)算、圖像處理以及用戶界面友好化方面表現(xiàn)突出。應(yīng)用:廣泛應(yīng)用于數(shù)列極限、函數(shù)極限、導(dǎo)數(shù)、微分等數(shù)學(xué)概念的計(jì)算和教學(xué)中,也常用于航天工程、氣象、地震等領(lǐng)域的科學(xué)計(jì)算。Mathematica:簡(jiǎn)介:一款功能強(qiáng)大的數(shù)學(xué)軟件,支持符號(hào)計(jì)算、數(shù)值計(jì)算、圖形繪制等多種功能。在科學(xué)研究和工程技術(shù)中,科學(xué)計(jì)算軟件已成為不可或缺的工具。浦東新區(qū)定制科學(xué)計(jì)算軟件比較

特點(diǎn):界面簡(jiǎn)潔明了,功能布局合理,易于上手;崇明區(qū)常見科學(xué)計(jì)算軟件供應(yīng)

student[changevar] - 變量代換dawson - Dawson 積分ellipsoid - 橢球體的表面積evalf(int) - 數(shù)值積分intat, Intat - 在一個(gè)點(diǎn)上積分求值第10章 微分方程10.1 微分方程分類odeadvisor - ODE-求解分析器DESol - 表示微分方程解的數(shù)據(jù)結(jié)構(gòu)pdetest - 測(cè)試pdsolve 能找到的偏微分方程(PDEs)解10.2 常微分方程求解solve - 求解常微方程 (ODE)dsolve - 用給定的初始條件求解ODE 問(wèn)題dsolve/inttrans - 用積分變換方法求解常微分方程dsolve/numeric - 常微方程數(shù)值解dsolve/piecewise - 帶分段系數(shù)的常微方程求解dsolve - 尋找ODE 問(wèn)題的級(jí)數(shù)解崇明區(qū)常見科學(xué)計(jì)算軟件供應(yīng)

甘茨軟件科技(上海)有限公司匯集了大量的優(yōu)秀人才,集企業(yè)奇思,創(chuàng)經(jīng)濟(jì)奇跡,一群有夢(mèng)想有朝氣的團(tuán)隊(duì)不斷在前進(jìn)的道路上開創(chuàng)新天地,繪畫新藍(lán)圖,在上海市等地區(qū)的數(shù)碼、電腦中始終保持良好的信譽(yù),信奉著“爭(zhēng)取每一個(gè)客戶不容易,失去每一個(gè)用戶很簡(jiǎn)單”的理念,市場(chǎng)是企業(yè)的方向,質(zhì)量是企業(yè)的生命,在公司有效方針的領(lǐng)導(dǎo)下,全體上下,團(tuán)結(jié)一致,共同進(jìn)退,齊心協(xié)力把各方面工作做得更好,努力開創(chuàng)工作的新局面,公司的新高度,未來(lái)甘茨軟件供應(yīng)和您一起奔向更美好的未來(lái),即使現(xiàn)在有一點(diǎn)小小的成績(jī),也不足以驕傲,過(guò)去的種種都已成為昨日我們只有總結(jié)經(jīng)驗(yàn),才能繼續(xù)上路,讓我們一起點(diǎn)燃新的希望,放飛新的夢(mèng)想!