YOLO系列算法是目標識別領域很重要的技術(shù)之一,因為性能強大、消耗算力較少,一直以來都是實時目標檢測領域的主要范式。該框架被大量用于各種實際應用,包括自動駕駛、監(jiān)控和物流等行業(yè)的目標識別。自今年2月YOLOv9發(fā)布以后,近期,清華又推出了YOLOv10,作為計算機視覺領域的突破性框架,具備實時的端到端目標檢測能力,通過提供結(jié)合效率和準確性的強大解決方案,延續(xù)了YOLO系列的傳統(tǒng)。據(jù)悉,YOLOv10在各種模型規(guī)模上都實現(xiàn)了SOTA性能和效率。例如,YOLOv10-S在COCO上的類似AP下比RT-DETR-R18快1.8倍,同時參數(shù)數(shù)量和FLOP大幅減少。與YOLOv9-C相比,在性能相同的情況下,YOLOv10-B的延遲減少了46%,參數(shù)減少了25%。SpeedDP支持Yolo系列算法。山西國產(chǎn)化圖像標注有哪些

此前,九號電動車的自平衡技術(shù)一次次刷新人們的認知,而其中一款探索版車型,甚至加入了智能攝像頭,能夠識別行人、障礙物,自動規(guī)劃行駛路線,達成自動駕駛的目的。很多人好奇這種怎么做到的,其實很簡單,車輛內(nèi)部攝像頭安裝了具備圖像處理的傳感器。這種傳感器就是圖像處理板,這類AI板卡在目標識別算法的賦能下,就能夠?qū)σ曇胺秶奈矬w進行AI分類識別,從而幫助車輛進行避障。像成都慧視開發(fā)的高性能AI圖像處理板Viztra-HE030,采用的是RK3588開發(fā)而成,憑借其工業(yè)級的性能,6.0TOPS的算力,就能夠在車輛行駛過程中的復雜環(huán)境下進行周邊環(huán)境的快速AI識別分類。當然,算法的能力也十分關(guān)鍵,由于車輛行駛環(huán)境的不斷變化,算法面臨的識別畫面也不斷變化,如何精細的進行識別,關(guān)系到車輛的行駛安全。山西國產(chǎn)化圖像標注有哪些資源受限環(huán)境,缺乏大規(guī)模訓練所需的計算資源和時間。

識別算法的性能提升依靠大量的圖像標注,傳統(tǒng)模式下,需要人工對同一識別目標的數(shù)據(jù)集進行一步一步手動拉框,但是這個過程的痛苦只有做過的人才知道。越多素材的數(shù)據(jù)集對于算法的提升越有幫助,常規(guī)情況下,一個20秒時長30幀的視頻就多達兩三百張畫面需要標注,如果視頻時長或者視頻的幀速率增加,需要標注的幀畫面將會更多。小編曾試過標注一個時長為1分30秒幀速率為60的視頻,需要標注的畫面竟然多達5000多張,當我標注到500張的時候,整個人都已經(jīng)麻木,并且出現(xiàn)情緒波動,望著剩下的4500多張待標注畫面,看著都頭皮發(fā)麻,怎么都不想繼續(xù)了。
小興安嶺的日常巡護,是構(gòu)筑東北生態(tài)安全的必要措施,進入冬季,整個小興安嶺將處于冰雪覆蓋,按照傳統(tǒng)的巡檢模式,危險且費力。整個小興安嶺森林覆蓋率達到96%,只靠肉眼的觀察,很容易錯過死角空白區(qū)的潛在危險,因此,無人機上線了。將無人機智能化,在吊艙的基礎上加裝具備智能圖像處理的板卡,再通過定制算法的植入,一個智慧“巡檢員”就上線了。面對大森林這樣復雜的環(huán)境,成都慧視開發(fā)的高性能AI圖像處理板Viztra-HE030可以勝任,這塊板卡采用了瑞芯微旗艦級芯片RK3588,能夠輸出6.0TOPS的算力,考慮到小興安嶺冬天寒冷的環(huán)境,這款板卡能夠適應零下40℃的環(huán)境,長時間的戶外工作不在話下。SpeedDP能夠?qū)崿F(xiàn)AI自動圖像標注。

圖像識別方法可以分為兩大類,模型方法和搜索方法。模型方法是在業(yè)界研究和使用比較多的方法。模型的方法是試圖通過一些已知“標簽”的圖像,通過機器學習的各種方法來學習一個描述這些標簽的“模型”,從而,對于一個新的未知圖像,經(jīng)過這個模型判斷出其應該具有的標簽?;谒阉鞯姆椒ㄊ窃诖髷?shù)據(jù)時代才出現(xiàn)的方法,其基礎是將已知標簽的圖像數(shù)據(jù)建成一個可以進行高效率檢索的數(shù)據(jù)庫,稱為圖像索引。通常需要大量的圖像來建索引,但圖像的標簽可以有少量的噪聲。那么,對一副待測圖像,我們到這個數(shù)據(jù)庫中去找與其相同或者相似的若干圖像,然后綜合這些圖像的標簽來預測待測圖像的標簽。SmartDP基于yolo實現(xiàn)算法模型的打造。甘肅多系統(tǒng)適配圖像標注技術(shù)
SmartDP是一個小樣本算法模型開發(fā)平臺?山西國產(chǎn)化圖像標注有哪些
圖像標注就是給圖像打上標簽標記,例如矩形框等形式,在以前,需要招聘專門的圖像標注師,隨著AI的不斷發(fā)展,這個行業(yè)正發(fā)生翻天覆地的變化。人工智能利用計算機和機器模仿人類思維來解決問題或制定決策。深度學習是人工智能的子領域,深度學習算法模型由神經(jīng)網(wǎng)絡組成。通過學習樣本數(shù)據(jù)的特征表達以及數(shù)據(jù)分布實現(xiàn)能夠像人一樣具備分析和識別目標的能力。通常情況下,AI開發(fā)的基本流程是從需求分析、數(shù)據(jù)制作、模型訓練、測試驗證再到***的模型部署這幾個步驟,而SpeedDP正式采用標準的AI開發(fā)流程,從數(shù)據(jù)標注到模型開發(fā),然后進行模型部署,來逐步實現(xiàn)自動化的圖像標注。山西國產(chǎn)化圖像標注有哪些