在智能制造領域,其E500系列機架式邊緣服務器已部署于比亞迪、富士康等企業(yè)的智能工廠。該設備集成Intel Xeon D處理器與NVIDIA Jetson AGX Orin GPU,支持8路4K攝像頭實時分析,可精確識別0.01毫米級的機械臂運動偏差。在深圳某電子廠的測試中,系統將設備故障響應時間從3秒壓縮至15毫秒,使產線綜合效率(OEE)提升18%,年節(jié)省運維成本超2000萬元。在智能交通場景中,倍聯德與某車企合作的5G無人公交項目,通過路側邊緣計算節(jié)點實時處理1平方公里范圍內所有車輛的數據,結合TSN時間敏感網絡技術,使緊急制動距離縮短40%,信號燈配時優(yōu)化效率提升40%。這一方案在2025年四川地震救援中發(fā)揮關鍵作用,其車載邊緣設備在斷網環(huán)境下持續(xù)工作72小時,通過衛(wèi)星鏈路傳輸壓縮后的手術數據,成功實施3例野外截肢手術。邊緣計算技術正在不斷演進,以適應更普遍的應用場景。廣東主流邊緣計算應用場景

倍聯德EdgeAI平臺引入其聯邦學習與強化學習技術:任務分級處理:將緊急控制指令(如機械臂急停)分配至本地邊緣節(jié)點,延遲<5毫秒;將非實時任務(如生產數據統計)上傳至云端,降低本地算力壓力。模型壓縮優(yōu)化:通過知識蒸餾技術,將工業(yè)質檢AI模型體積縮小90%,可在邊緣節(jié)點直接運行,減少90%的數據回傳量。預測性運維:基于設備歷史數據訓練故障預測模型,提前15天預警潛在故障,使運維成本降低35%。在深圳某港口,倍聯德方案使無人集卡調度延遲從秒級降至毫秒級,年運輸效率提升30%。智慧交通邊緣計算盒子價格通過減少數據中心能耗,邊緣計算有助于降低全球IT行業(yè)的碳排放總量。

倍聯德積極參與邊緣計算安全標準化工作,作為重要成員參與編制《工業(yè)邊緣計算安全技術要求》等3項國家標準。公司聯合中國信通院、華為等機構發(fā)起“邊緣計算安全聯盟”,推動設備認證、漏洞共享、應急響應等機制落地。截至2025年6月,聯盟已吸納120余家企業(yè),完成2000余款邊緣設備的安全評估。在智能電網領域,倍聯德與國家電網合作構建“云-邊-端”協同防護體系,通過邊緣節(jié)點部署輕量化入侵檢測系統,將安全事件響應時間從分鐘級縮短至秒級。在智能制造場景中,公司為富士康打造的“安全即服務”平臺,集成威脅情報、漏洞管理、合規(guī)檢查等功能,使客戶安全運維成本降低40%。
在工業(yè)互聯網、智能交通、智慧醫(yī)療等場景中,數據處理的實時性正成為決定行業(yè)競爭力的重要指標。傳統云計算模式下,數據需經長距離傳輸至云端處理,端到端延遲普遍超過100毫秒,難以滿足高精度控制需求。而5G網絡與邊緣計算的深度融合,正以“高帶寬+低時延”的雙重特性,重構數據處理范式。作為國家高新企業(yè),深圳市倍聯德實業(yè)有限公司憑借其在邊緣計算領域的深厚積累,率先推出多款5G邊緣計算解決方案,為智能制造、智慧城市等領域提供“超實時”智能支撐。邊緣緩存技術通過預測用戶行為提前存儲熱門內容,減少重復數據傳輸。

在能源管理領域,其R500Q液冷服務器支持50kW單機柜功率密度,可連續(xù)365天無故障運行。在武漢某光伏電站的部署中,系統通過實時分析電池板溫度、光照強度等數據,使發(fā)電效率提升8%,年減少碳排放1.2萬噸。倍聯德積極構建開放生態(tài),與華為、中國移動等企業(yè)建立深度合作。在江蘇某智慧園區(qū)項目中,雙方聯合部署的MEC專網實現三大創(chuàng)新:網絡切片隔離:通過5G硬切片技術,將園區(qū)監(jiān)控、工業(yè)控制、辦公上網等業(yè)務分流至不同虛擬網絡,確保關鍵任務時延低于5毫秒;UPF下沉部署:將用戶面功能(UPF)下沉至園區(qū)邊緣,使數據本地化處理率達85%,年節(jié)省帶寬費用超千萬元;應用生態(tài)聚合:開放邊緣平臺的API接口,吸引30余家ISV入駐,形成涵蓋安防、能源管理、物流優(yōu)化的應用生態(tài)。此外,倍聯德還與英特爾、英偉達等芯片廠商成立聯合實驗室,共同研發(fā)適用于邊緣場景的異構計算架構。其新推出的24重心Atom架構緊湊型邊緣服務器,功耗只350W,卻可支持8路1080P視頻流實時分析,使中小企業(yè)單條生產線部署成本從15萬元降至3.8萬元。遠程醫(yī)療場景中,邊緣計算支持低延遲的影像傳輸和手術機器人實時控制。小模型邊緣計算代理商
邊緣計算的發(fā)展需要硬件、軟件以及算法的共同支持。廣東主流邊緣計算應用場景
邊緣推理的重要價值在于將AI能力下沉至數據源頭,解決云端模式的延遲痛點。倍聯德通過“模型輕量化+異構計算”技術,使邊緣設備具備單獨決策能力:針對工業(yè)機器人控制場景,倍聯德采用“剪枝+量化+知識蒸餾”三重壓縮技術,將YOLOv5目標檢測模型體積從140MB壓縮至3.2MB,推理速度提升12倍。在某電子廠的實際應用中,邊緣設備可實時識別機械臂運動軌跡偏差,響應延遲從200毫秒降至15毫秒,故障停機時間減少65%。倍聯德E500系列邊緣服務器集成Intel Xeon D處理器與NVIDIA Jetson AGX Orin GPU,支持動態(tài)任務分配。在自動駕駛測試中,該設備將激光雷達點云處理任務分配給GPU,將決策規(guī)劃任務分配給CPU,使單車每日處理數據量達10TB,同時功耗降低40%。廣東主流邊緣計算應用場景